Below is a bibliography of research into the causes of rosacea cited in this section.
1. Yamasaki K, DiNardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nature Medicine 2007;13:975-980.
2. Muto Y, Wang Z, Vanderberghe M, Two A, Gallo RL, Di Nardo A. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. Journal of Investigative Dermatology doi:10.1038/jid.2014. May 20, 2014.
3. Navarini AA, Meller S, Gilliet M, Conrad C. Antimicrobial peptide-DNA complexes are implicated in initial pathogenesis of rosacea. Journal of Investigative Dermatology 2010;130S1:13.
4. Schwab VD, Sulk M, Seeliger S, et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. Journal of Investigative Dermatology Symposium Proceedings 2011;15:53-62.
5. Wladis EJ, Carlson JA, Wang MS, Bhoiwala DP, Adam AP. Toll-like receptors and vascular markers in ocular rosacea. Ophthalmic Plastic and Reconstructive Surgery 2013;29:290-293.
6. Wladis EJ, Iglesias BV, Adam AP, Gosselin EJ. Molecular biologic assessment of cutaneous specimens of ocular rosacea. Ophthalmic Plastic and Reconstructive Surgery 2012;28:2460-250.
7. Seeliger S, Buddenkotte J, Schmidt-Choudhury A, Rosignoli C, Shpacovitch V, et al. Pituitary adenylate cyclase activating polypeptide: an important vascular regulator in human skin in vivo. American Journal of Pathology 2010;177:2563-2575.
8. Seiffert K, Ding W, Wagner JA, Granstein RD. ATPγS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling. Journal of Investigative Dermatology 2006;126:1017-1027.
9. Stohl LL, Zang JB, Ding W, Manni M, Zhou XK, Granstein RD. Norepinephrine and adenosine-5’-triphosphate synergize in inducing IL-6 production by human dermal microvascular endothelial cells. Cytokine 2013;53:605-612.
10. New study shows heat increases nerve activity. Rosacea Review Spring 2013.
11. Kosmadaki MG, Yaar M, Arble BL, Gilchrest BA. UV induces VEGF through a TNF-alpha independent pathway. Federation of American Societies for Experimental Biology Journal 2003;17:446-448.
12. Yamasaki K, Gallo RL. The molecular pathology of rosacea. Journal of Dermatological Science 2009;55:77-81.
13. Mite infestation mimics rosacea. Rosacea Review Summer 2003.
14. Forton FM. Papulopustular rosacea, skin immunity and Demodex: pityriasis folliculorum as a missing link. Journal of the European Academy of Dermatology and Venereology 2012;26:19-28.
15. Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. British Journal of Dermatology 2007;157:474-481.
16. Whitfeld M, Gunasingam N, Leow LJ, Shirato K, Preda V. Staphylococcus epidermidis: a possible role in the pustules of rosacea. Journal of the American Academy of Dermatology 2011;64:49-52.
17. Weinstock LB, Steinhoff M. Rosacea and small intestinal bacterial overgrowth: prevalence and response to rifaximin. Journal of the American Academy of Dermatology 2013;68:875-876.
18. Researchers report interim results of studies funded by NRS members. Rosacea Review Summer 2013.
19. Sulk M, Seeliger S, Aubert J, Schwab VD, Cevikbas F, et al. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. Journal of Investigative Dermatology 2011;132:1253-1262.
20. New study identifies cause of flushing. Rosacea Review Winter 2010.
21. Ni Raghallaigh S, Bender K, Lacey N, Brennan L, Powell FC. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. British Journal of Dermatology 2012;166:279-287.
Read more:
• Introduction
• Innate immune system
• Neurovascular system
• Vascular changes
• Demodex mites & microbes
• Genetics
• Other theories